Tuesday, 30 August 2016

How Web Scraping can Help you Detect Weak spots in your Business

How Web Scraping can Help you Detect Weak spots in your Business

Business intelligence is not a new term. Businesses have always been employing experts for analysing the progress, market and industry trends to keep their growth graph going up. Now that we have big data and the tool to gather this data – Web scraping, business intelligence has become even more fruitful. In fact, business intelligence has become a necessary thing to survive now that the competition is fierce in every industry. This is the reason why most enterprises depend on web scraping solutions to gather the data relevant to their businesses. This data is highly insightful and dependable enough to make critical business decisions. Business intelligence from web scraping is definitely a game changer for companies as it can supply relevant and actionable data with minimal effort.

Most businesses have weak spots that are being overlooked or hidden from the plain sight. These weak spots, if left unnoticed can gradually result in the downfall of your company. Here is how you can use data acquired through web scraping to detect weak spots in your business and strengthen them.

Competitor analysis

Many a times, you can find out the flaws in your business by keeping a close watch on your competitors. Competitor analysis is something that we owe to web scraping as the level of competitive intelligence that you can derive from web scraping has never been achievable in the past. With crawling forums and social media sites where your target audience is, you can easily find out if your competitor is leveraging something you have overlooked. Competitor analysis is all about staying updated to each and every action by your competitors, so that you can always be prepared for their next strategic move. If your competitors are doing better than you, this data can be used to make a comparison between your business and theirs which would give you insights on where you lack.

Brand monitoring on Social media

With social media platforms acting like platforms where businesses and customers can interact with each other, the data available on these sites are increasingly becoming relevant to businesses. Any issues in your business operations will also reflect on your customer sentiments. Social media is a goldmine of sentiment data that can help you detect issues within your company. By analysing the posts that mention your brand or product on social media sites, you can identify what department of your company is functioning well and what isn’t.

For example, if you are an Ecommerce portal and many users are complaining about delivery issues from your company on social media, you might want to switch to a better logistics partner who does a better job. The ability to identify such issues at the earliest is extremely important and that’s where web scraping becomes a life saver. With social media scraping, monitoring your brand on social media is easy like never before and the chances of minor issues escalating to bigger ones is almost non-existent. Brand monitoring is extremely crucial if you are a business operating in the online space. Social media scraping solutions are provided by many leading web scraping companies, which totally eliminates the technical complications associated with the process for you.

Finding untapped opportunities

There are always new and untapped markets and opportunities that are relevant to your business. Finding them is not going to be an easy task with manual and outdated methods of research. Web scraping can fill this gap and help you find opportunities that your company can make use of to leverage your reach and progress. Sometimes, targeting the right audience makes all the difference that you’ve been trying to make. By using web crawling to find mentions of your relevant keywords on the web, you can easily stay updated on your niche and fill in to any new untapped markets. Web crawling for keywords is better explained in our previous blog.

Bottom line

It is not a cakewalk to stay ahead in the competition considering how competitive every industry has become in this digital age. It is crucial to find the weak spots and untapped opportunities of your business before someone else does. Of course, you can always use some help from the technology when you need it. Web scraping is clearly the best way to find and gather data that would help you figure these out. With web crawling solutions that can completely take care of this niche process, nothing is stopping you from using the data and insights that the web has in stock for your business.

Source: https://www.promptcloud.com/blog/web-scraping-detect-weak-spots-business

Monday, 22 August 2016

ERP Data Conversions - Best Practices and Steps

ERP Data Conversions - Best Practices and Steps

Every company who has gone through an ERP project has gone through the painful process of getting the data ready for the new system. The process of executing this typically goes through the following steps:

(1) Extract or define

(2) Clean and transform

(3) Load

(4) Validate and verify

This process is typically executed multiple times (2 - 5+ times depending on complexity) through an ERP project to ensure that the good data ends up in the new system. If the data is either incorrect, not well enough cleaned or adjusted or loaded incorrectly in to the new system it can cause serious problems as the new system is launched.

(1) Extract or define

This involves extracting the data from legacy systems, which are to be decommissioned. In some cases the data may not exist in a legacy system, as the old process may be spreadsheet-based and has to be created from scratch. Typically this involves creating some extraction programs or leveraging existing reports to get the data in to a format which can be put in to a spreadsheet or a data management application.

(2) Data cleansing

Once extracted it normally reviewed is for accuracy by the business, supported by the IT team, and/or adjusted if incorrect or in a structure which the new ERP system does not understand. Depending on the level of change and data quality this can represent a significant effort involving many business stakeholders and required to go through multiple cycles.

(3) Load data to new system

As the data gets structured to a format which the receiving ERP system can handle the load programs may also be build to handle certain changes as part of the process of getting the data converted in to the new system. Data is loaded in to interface tables and loaded in to the new system's core master data and transactions tables.

When loading the data in to the new system the inter-dependency of the different data elements is key to consider and validate the cross dependencies. Exceptions are dealt with and go in to lessons learned and to modify extracts, data cleansing or load process in to the next cycle.

(4) Validate and verify

The final phase of the data conversion process is to verify the converted data through extracts, reports or manually to ensure that all the data went in correctly. This may also include both internal and external audit groups and all the key data owners. Part of the testing will also include attempting to transact using the converted data successfully.

The topmost success factors or best practices to execute a successful conversion I would prioritize as follows:

(1) Start the data conversion early enough by assessing the quality of the data. Starting too late can result in either costly project delays or decisions to load garbage and "deal with it later" resulting in an increase in problems as the new system is launched.

(2) Identify and assign data owners and customers (often forgotten) for the different elements. Ensure that not only the data owners sign-off on the data conversions but that also the key users of the data are involved in reviewing the selection criteria's, data cleansing process and load verification.

(3) Run sufficient enough rounds of testing of the data, including not only validating the loads but also transacting with the converted data.

(4) Depending on the complexity, evaluate possible tools beyond spreadsheets and custom programming to help with the data conversion process for cleansing, transformation and load process.

(5) Don't under-estimate the effort in cleansing and validating the converted data.

(6) Define processes and consider other tools to help how the accuracy of the data will be maintained after the system goes live.

Source: http://ezinearticles.com/?ERP-Data-Conversions---Best-Practices-and-Steps&id=7263314

Wednesday, 10 August 2016

Difference between Data Mining and KDD

Difference between Data Mining and KDD

Data, in its raw form, is just a collection of things, where little information might be derived. Together with the development of information discovery methods(Data Mining and KDD), the value of the info is significantly improved.

Data mining is one among the steps of Knowledge Discovery in Databases(KDD) as can be shown by the image below.KDD is a multi-step process that encourages the conversion of data to useful information. Data mining is the pattern extraction phase of KDD. Data mining can take on several types, the option influenced by the desired outcomes.

Knowledge Discovery in Databases Steps
Data Selection

KDD isn’t prepared without human interaction. The choice of subset and the data set requires knowledge of the domain from which the data is to be taken. Removing non-related information elements from the dataset reduces the search space during the data mining phase of KDD. The sample size and structure are established during this point, if the dataset can be assessed employing a testing of the info.
Pre-processing

Databases do contain incorrect or missing data. During the pre-processing phase, the information is cleaned. This warrants the removal of “outliers”, if appropriate; choosing approaches for handling missing data fields; accounting for time sequence information, and applicable normalization of data.
Transformation

Within the transformation phase attempts to reduce the variety of data elements can be assessed while preserving the quality of the info. During this stage, information is organized, changed in one type to some other (i.e. changing nominal to numeric) and new or “derived” attributes are defined.
Data mining

Now the info is subjected to one or several data-mining methods such as regression, group, or clustering. The information mining part of KDD usually requires repeated iterative application of particular data mining methods. Different data-mining techniques or models can be used depending on the expected outcome.
Evaluation

The final step is documentation and interpretation of the outcomes from the previous steps. Steps during this period might consist of returning to a previous step up the KDD approach to help refine the acquired knowledge, or converting the knowledge in to a form clear for the user.In this stage the extracted data patterns are visualized for further reviews.
Conclusion

Data mining is a very crucial step of the KDD process.

For further reading aboud KDD and data mining ,please check this link.

Source: http://nocodewebscraping.com/difference-data-mining-kdd/

Thursday, 4 August 2016

What's difference between web scraping and data mining?

What's difference between web scraping and data mining?

Data mining: automatically searching large stores of data for patterns. How you get the data is irrelevant, only how you analyze it. Data mining involves the use of complex statistical algorithms.

Screen/web scraping is a method for extracting textual characters from screens so that they could be analyzed. Commonly, it is used to extract characters from websites (web scraping), though not exclusively. This method for gathering data is direct, either through looking at websites' html code or visual abstraction techniques.

Web scraping could be a source for data mining but it doesn't have to be because your data may not come from the web.

Data Mining can take any source of data and if that process requires data available from the public web then web scraping could be one of the methods to get such data.
You can also perform web scraping. without mining it later.

The reality is that a lot of data today IS on the web and a lot of data mining does use web related data.

Web scraping is getting data from web. Data mining is getting knowledge from data.

Source: https://www.quora.com/Whats-difference-between-web-scraping-and-data-mining

Monday, 1 August 2016

Best Alternative For Linkedin Data Scraping

Best Alternative For Linkedin Data Scraping

When I started my career in sales, one of the things that my VP of sales told me is that ” In sales, assumptions are the mother of all f**k ups “. I know the F word sounds a bit inappropriate, but that is the exact word he used. He was trying to convey the simple point that every prospect is different, so don’t guess, use data to come up with decisions.

I joined Datahut and we are working on a product that helps sales people. I thought I should discuss it with you guys and take your feedback.

Let me tell you how the idea evolved itself. At Datahut, we get to hear a lot of problems customers want to solve. Almost 30 percent of all the inbound leads ask us to help them with lead generation.

Most of them simply ask, “Can you scrape Linkedin for me”?

Every time, we politely refused.

But not anymore, we figured out a way to solve their problem without scraping Linkedin.

This should raise some questions in your mind.

1) What problem is he trying to solve?– Most of the time their sales team does not have the accurate data about the prospects. This leads to a total chaos. It will end up in a waste of both time and money by selling the leads that are not sales qualified.

2) Why do they need data specifically from Linkedin? – LinkedIn is the world’s largest business network. In his view, there is no better place to find leads for his business than Linkedin. It is right in a way.

3) Ok, then what is wrong in scraping Linkedin? – Scraping Linkedin is against its terms and it can lead to legal issues. Linkedin has an excellent anti-scraping mechanism which can make the scraping costly.

4) How severe is the problem? – The problem has a direct impact on the revenues as the productivity of the sales team is too low. Without enough sales, the company is a joke.

5) Is there a better way? – Of course yes. The people with profiles in LinkedIn are in other sites too. eg. Google plus, CrunchBase etc. If we can mine and correlate the data, we can generate leads with rich information. It will have better quality than scraping LinkedIn.

6) What to do when the machine intelligence fails? – We have to use human intelligence. Period!

Datahut is working on a platform that can help you get leads that match your ideal buyer persona. It will be a complete Business intelligence platform powered by machine and human intelligence for an efficient lead research & discovery.We named it Leadintel. We’ve also established some partnerships that help to enrich the data and saves the trouble of lawsuits.

We are opening our platform for beta users. You can request an invitation using the contact form. What do you think about this? What are your suggestions?

Thanks for reading this blog post. Datahut offers affordable data extraction services (DaaS) . If you need help with your web scraping projects let us know and we will be glad to help.

Source:http://blog.datahut.co/best-alternative-for-linkedin-data-scraping/